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Abstract-The effects of material anisotropy and inhomogeneity on void nucleation and growth in
incompressible anisotropic nonlinearly elastic solids are examined. A bifurcation problem is con
sidered for a composite sphere composed of two arbitrary homogeneous incompressible nonlinearly
elastic materials which are transversely isotropic about the radial direction, and perfectly bonded
across a spherical interface. Under a uniform radial tensile dead-load, a branch ofradially symmetric
configurations involving a traction-free internal cavity bifurcates from the undeformed configuration
at sufficiently large loads. Several types of bifurcation are found to occur. Explicit conditions
determining the type of bifurcation are established for the general transversely isotropic composite
sphere. In particular. if each phase is described by an explicit material model which may be viewed
as a generalization of the classic neo-Hookean model to anisotropic materials, phenomena which
were not observed for the homogeneous anisotropic sphere nor for the composite neo-Hookean
sphere may occur. The stress distribution as well as the possible role of cavitation in preventing
interface debonding are also examined for the general composite sphere.

I. INTRODUCTION

Void nucleation and growth in solids is a topic of considerable interest because of the role
such phenomena play in fracture and other failure mechanisms [see e.g. Tvergaard (1990)
for a review of void growth in metals]. Sudden void formation ("cavitation") in vulcanized
rubber has also been observed experimentally by Gent and Lindley (1958) [see also Williams
and Schapery (1965)]. A recent review on cavitation in rubber is that of Gent (1990).
Nonlinear theories ofsolid mechanics have been extensively used to model such phenomena.
The impetus for much of the current developments has been supplied by the work of Ball
(1982). Ball has studied a class of bifurcation problems for the equations of nonlinear
elasticity which model the appearance of a cavity in the interior of an apparently solid
homogeneous isotropic elastic sphere or cylinder once a critical external load is attained.
An alternative interpretation for such problems in terms of the sudden rapid growth of
a pre-existing microvoid has been given by Horgan and Abeyaratne (1986); see also
Sivaloganathan (1986a). As pointed out, for example, by Horgan and Abeyaratne (1986),
cavitation is an inherently nonlinear phenomenon and cannot be modeled using linearized
solid mechanics theories.

In the work of Ball (1982) on radially symmetric solutions, bifurcation and stability
analyses are carried out for both incompressible and compressible materials. Further studies
in the compressible case were carried out by Stuart (1985, 1993), Podio-Guidugli et al.
(1986), Horgan and Abeyaratne (1986), Chung et al. (1986), Sivaloganathan (1986a, b),
Ertan (1988), Tian-hu (1990), Horgan (1992) and Meynard (1992). Anisotropic com
pressiblematerials were considered by Antman and Negron-Marrero (1987). Other contexts
in which cavitation for compressible materials was investigated include consideration of
non radially symmetric solutions (James and Spector, 1991), elastodynamics (Pericak
Spector and Spector, 1988) and elastic membrane theory [Haughton (1990), Steigmann
(1992) ; see also Haughton (1986) for incompressible membrane theory]. For incompressible
materials, finite strain plasticity models were investigated by Chung et al. (1987) while the
effects of rate dependence were examined by Abeyaratne and Hou (1989). Further studies
for incompressible materials were carried out by Chou-Wang and Horgan (1989a), Hou
and Zhang (1990) for elastostatics and by Chou-Wang and Horgan (1989b) for elasto-
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dynamics. The effects of material inhomogeneity on cavitation were investigated by
Horgan and Pence (1989a, b, c) for incompressible isotropic composite materials. See also
Sivaloganathan (1991) for isotropic materials with smoothly varying elastic properties.
Void collapse for both incompressible and compressible materials has been examined by
Abeyaratne and Hou (1991a). Further work in plasticity was carried out by Hou and
Abeyaratne (1992), Huang et al. (1991) and Tvergaard et al. (1992). The relationship
between cavitation and asymmetric instabilities has been discussed by Abeyaratne and Hou
(1991 b).

In a recent paper (Polignone and Horgan, 1993) the present authors have examined
the effects of material anisotropy on cavitation for incompressible nonlinearly elastic spheres.
That investigation was motivated by the work of Antman and Negron-Marrero (1987) on
compressible transversely isotropic nonlinearly elastic solids and by the studies of Horgan
and Pence (1989a, b, c) on composite incompressible nonlinearly elastic spheres with iso
tropic phases. Polignone and Horgan (1993) considered a bifurcation problem for a solid
sphere composed of an incompressible homogeneous nonlinearly elastic material which is
transversely isotropic about the radial direction. Under a uniform radial tensile dead-load,
a branch of radially symmetric configurations involving a traction-free internal cavity
bifurcates from the undeformed configuration at sufficiently large loads. Closed form
analytic solutions were obtained for a specific material model, which may be viewed as a
generalization of the classic neo-Hookean model to anisotropic materials. In contrast to the
situation for a neo-Hookean sphere, bifurcation was shown to occur locally either to the
right (supercritical) or to the left (subcritical), depending on the degree ofanisotropy. In the
latter case, the cavity has finite radius on first appearance. Such a discontinuous change in
stable equilibrium configurations is reminiscent of the snap-through buckling phenomenon
of structural mechanics. Such dramatic cavitational instabilities ("snap cavitation") were
also previously encountered by Antman and Negron-Marrero (1987) due to anisotropy
and by Horgan and Pence (1989a, b, c) due to material inhomogeneity.

The purpose of the present paper is to investigate the combined effects of anisotropy
and material inhomogeneity on cavitation. A more complicated sequence of cavitational
instabilities might be expected to occur due to the interaction of these effects and we show
that this is indeed the case. In Section 2, we formulate the basic boundary value problem
of concern. We consider a composite sphere composed of two incompressible anisotropic
nonlinearly elastic phases, each of which is transversely isotropic about the radial direction
and perfectly bonded across a spherical interface. The sphere is subjected to a prescribed
uniform radial tensile dead-load Po on its boundary. In Section 3, it is shown that one
solution to this problem, for all values ofPo, corresponds to a trivial homogeneous state in
which the sphere remains undeformed but stressed. However,.for sufficiently large values
of Po, one has in addition other possible radially symmetric configurations involving an
internal traction-free cavity. Such solutions bifurcate from the homogeneous solution at
Pm a critical value ofPo. The possibility for these bifurcated solutions to exist depends only
on the constitutive law for the material at the core of the composite sphere (Section 4). In
Section 4, we also give conditions to determine whether bifurcation is supercritical or
subcritical. In Section 5, the stability of the foregoing solutions is examined using an energy
minimization approach. For a composite sphere described by a general transversely isotropic
strain-energy density function, W, the cavitation solutions are shown to be the only stable
(radially symmetric) solutions for sufficiently large loads. In Section 6, we present an
example which illustrates explicitly the preceding results. The specific anisotropic material
model proposed by Polignone and Horgan (1993) for the homogeneous sphere is employed
for each phase of the composite, and explicit results are obtained for the relationship
Po = Po(c) between the applied tensile load Po and the deformed cavity radius c. We also
obtain an explicit result for the relationship between the total energy and the deformed
cavity radius. We recall that for the isotropic composite sphere considered by Horgan and
Pence (1989a, b,c), and the homogeneous anisotropic sphere treated by Polignone and
Horgan (1993), when bifurcation at Po = Pcr occurs locally to the right, a smooth cavitation
takes place with cavity radius increasing continuously (from zero) as Po increases. Here
however the situation is quite different. We exhibit three possible configurations the sphere
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may assume when bifurcation occurs locally to the right. First, a smooth cavitation may
take place. Second, a snap cavitation may occur in which there is a cavity of finite radius
upon first appearance at a transition load which is less than Per- Third, the sphere may
undergo a smooth cavitation initially, and then experience a discontinuous jump in cavity
radius. That is, the cavity radius "snaps" from one finite value to another (larger) finite
value at a load Po greater than Per. The last two phenomena were not seen in the problems
considered by Horgan and Pence (1989a, b,c) and Polignone and Horgan (1993). When
bifurcation is to the left, the sphere experiences a snap cavitation so that again a cavity of
finite radius appears at a transition load which is less than Per. In Section 7, the stress
distribution is described. When a cavity is nucleated, in the case of smooth cavitation, a
predominant stress variation exists in a narrow boundary layer near the cavity wall. Also,
the effect of cavitation at the center on possible interface debonding is considered. It is
assumed that debonding occurs uniformly whenever the normal stress at the interface
reaches a threshold value. A condition on the strain-energy is given so that in a quasi
static loading process, cavitation relieves the interfacial normal stress so that subsequent
interfacial debonding is precluded. The boundary layers in the stresses as well as the stress
relaxation in the normal stress at the interface subsequent to cavitation are illustrated for
the specific material model of Section 6.

It is worth noting here, as was also observed by Antman and Negron-Marrero (1987)
and Polignone and Horgan (1993), that the radial anisotropy considered in those references
and in the present paper does indeed arise in technological applications. A striking example
occurs in the casting of metals where the temperature gradient in the freezing process
induces molecular structure resulting in transverse isotropy about the radial direction [see
e.g. Fig. p. 321 of Walker (1956)].

2. PROBLEM FORMULATION

We are concerned with a sphere composed ofan incompressible anisotropic nonlinearly
elastic material. Using spherical polar coordinates, we denote the interior of the sphere in
its undeformed configuration by Do = {(R, e, C1»IO ::::; R < B, 0< e ::::; 2n,°::::; C1> ::::; n}. The
sphere is subjected to a prescribed uniform radial tensile dead-load of magnitude Po on its
boundary R = B. We assume that the resulting deformation, which takes the point in Do
with coordinates (R, e, C1» to the point (r, 8, </J) in the deformed configuration, is radially
symmetric. Thus the deformation has the form 8 = e, </J = C1>,

r = r(R) > 0, 0< R < B, r(O+) ~ 0, (1)

where r(R) is to be determined.
The deformation gradient tensor F associated with (1), referred to spherical polar

coordinates, is given by

F = diag(;(R), r(R)jR, r(R)jR), (2)

where ;(R) == (drjdR). Incompressibility then requires that J == det F = 1, which upon
integration yields

(3)

where c ~ °is a constant to be determined. If it is found that c = 0, (3) implies that the
body remains a solid sphere in the current configuration. However, if c is found to be
positive, then r(O +) = c > °and so there is a cavity of radius c centered at the origin in
the current configuration. In this event, the cavity surface is assumed to be traction-free.

The strain-energy density per unit undeformed volume for an elastic material which is
transversely isotropic about the Xl-direction is given by [see e.g. Jaunzemis (1967)]

SAS 30:24-0
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I] = tr e
12 = ![(tr C)2 -tr e2]

13 = det e
14 = cL+ci3
Is = CII

(4)

(5)

e is the right Cauchy-Green deformation tensor e = FTF, and Xi (i = 1,2,3) are the
usual Cartesian coordinates of a point in the deformed configuration. For incompressible
materials, we must have 13 = J2 = 1. The corresponding response equation for the Cauchy
stress tensor T for transversely isotropic incompressible materials is (Jaunzemis, 1967)

(6)

where B is the left Cauchy-Green deformation tensor B = FFT
, 1 is the unit tensor, p is the

unknown hydrostatic pressure associated with the incompressibility constraint J = 1, and
Wq = aW/aIq (q = 1,2,4,5). The deformation tensors M, N associated with the anisotropy
are given by

and

N,j = F"Fj "

(7)

(8)

where i, j = 1,2,3, and the usual Cartesian tensor notation, with summation over repeated
indices, is used. We shall assume that the strain-energy Wvanishes in the undeformed state
where /] = 3,12 = 3, /3 = 1,14 = °and Is = 1, so that we have the normalization condition

W(3, 3,1,0,1) = 0. (9)

We also assume that in the undeformed state the initial stress is a hydrostatic pressure, so
that (6) gives the further normalization condition

Ws(3,3, 1,0, 1) = 0. (10)

The incompressible material of concern here is assumed to be transversely isotropic
about the radial direction, and possibly inhomogeneous in the radial direction as well. The
strain-energy density per unit undeformed volume for such an elastic material is denoted
by

(11 )

where the explicit dependence of Won the radial coordinate R reflects the possible material
inhomogeneity. The normalization conditions (9), (10) are now written as

and

W(3,3,1,0,I;R)=0 VR~O,

W s(3, 3, 1,0, I; R) = ° V R ~ 0,

(12)

(13)

respectively. We shall be concerned in what follows with the case of a composite sphere
composed of two different transversely isotropic incompressible materials perfectly bonded
across the interface R = A( <B). The material properties in each individual phase are
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assumed to have smooth radial dependence. Thus W(I1'/2' 13'/4'/5; R) is assumed to be
smooth on °< R < A, A < R < B while suffering a jump discontinuity at the interface
R = A. Observe that, by virtue of (3), the deformation field is continuous at this interface.
In the remainder of this section, we proceed formally and assume that W possesses sufficient
regularity properties to permit the subsequent analysis.

In (5)-(8) we now let (R, e, <1», (r, e, </J) be associated with the indices (1,2,3) and so
obtain corresponding to the deformation field (1),

C = B = diag(f2,r 2jR 2,r2jR 2), (14)

M=O, (15)

N = diag (;2, 0, 0) (16)

and

II = ;2+2r2jR 2, (17)

12 = r4jR 4+2;2r2jR 2, (18)

13 = ;2r4jR 4 = 1, (19)

14 = 0, (20)

15 = ;2. (21)

Substitution from (14)-(16) into (10) yields the nonzero components of the Cauchy stress
T as

(22)

and

(23)

where the WI (t = 1,2,5) are evaluated at the values of the invariants given by (17)-(21),
and we note that WI is also dependent on the radial coordinate R. The derivatives in (22),
(23) are understood to be one-sided derivatives at the material interface R = A.

The equilibrium equations, in the absence of body forces, are

which in the present case reduce to

div T = 0, (24)

1 oTq,q,
--~~=o
rsin e o</J .

(25)

(26)

(27)

Equation (11), in view of (17)-(21), implies that Wand Wq are independent of the angular
variables, and thus it follows from (23), (26) and (27) that the pressure p = p(r) only. There
may be a jump discontinuity at the interface R = A in p(r). Elsewhere the pressure is
assumed sufficiently smooth. Since r = r(R), it is convenient for us to consider T = T(R)
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[and p = p(R)] rather than the more conventional T(r),p(r). The remaining equilibrium
equation (25), on using the chain-rule, becomes

dTrr 2;
dR + --;:(Trr-Tee ) = 0, on 0< R < A, A < R < B. (28)

Equation (28) is a first-order nonlinear ordinary differential equation for the pressure
p(R). Also for equilibrium, the normal traction component at the material interface must
be continuous, i.e.

Trr(A - ) = Trr(A + ).

The dead-load boundary condition now requires that

(29)

(30)

where the constant Po > °is prescribed. We note that the boundary conditions of vanishing
shear tractions are satisfied identically.

Thus, the boundary value problem to be solved is the following: For a prescribed value
of the dead-load traction Po > 0, we seek a pressure field p(R) and a constant c ~ Osuch
that (28)-(30) are satisfied where Trn Tee are given by (22), (23), (3). In addition if
c > 0, then the condition for a traction-free cavity surface

must also hold.

Trr(O) = 0, (31)

3. SOLUTIONS

On using the normalization condition (13), it may readily be shown that one solution
of the foregoing problem for all values of Po is

p(R) = 2[Wi (3,3, 1,0, 1; R)- W 2(3,3, 1, 0, 1; R)]-po, c = 0. (32)

This corresponds to the trivial homogeneous state of deformation

r(R) = R, (33)

with corresponding stresses Trr = Tee = Trj)(p = Po, so that the sphere remains undeformed
under a state of hydrostatic pressure. Note that even though the pressure p given in (32)
is in general discontinuous across the interface R = A, the corresponding stresses are
continuous.

We next describe solutions for which c > 0, corresponding to the presence ofa traction
free cavity at the origin. We use the notation [cf. Ball (1982) and Horgan and Pence (1989a)]

(
C3 )1/3}

V = v(R) == r(R)/R = 1+ R3 ,

[v- 2 =;]

and thus rewrite the invariants (17)-(21) as

(34)
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/1 = v- 4+2vz

/z = v4+2v- Z

/3 = I

/4 = 0

/S = V-
4
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(35)

Following the approach of Horgan and Pence (l989a) and Polignone and Horgan (1993),
we rewrite the differential equation (28) in the form

4v-
3

[( -4 Z)W I (-Z 4)W I -4W I] 0+ R v - V I R+ V - V Z R+V S R = on

On integration of (36), we have

o< R < A, A < R < B.

(36)

and

p(R)-[P]~~-p(O)= 2{v- 4(R)(W1 + WS)IR-v4(R)WzIR

-v-4(A)[W1+ Ws]~~ +v\A)[Wz]~~} +4J(R), A < R < B, (38)

where

(39)

and [f(s)]~~ = f(A +)- f(A -). In (36)-(39) the WI (l = 1,2,5) are evaluated at the values
of the invariants given by (35), and we have used the notation

On substitution into (22), and using (37), the radial stress becomes

Trr(R) = -p(0)-4J(R), 0 < R < A,

(40)

(41)

Trr(R) = -p(O)-[P]~~ +2{v- 4(A)[W1+ Ws]~~ -v4(A)[Wz]~~} -4J(R), A < R < B.

(42)

The interface condition (29) now shows that

so that (42) becomes

Trr(R) = -p(0)-4J(R), A < R < B.

(43)

(44)

The traction-free cavity surface condition (31), together with (41) and J(O) = 0, now yield
p(O) = 0, so that
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Trr(R) = -4J(R), 0 < R < B. (45)

Finally, by virtue of (45) and (34), we see that the dead-load boundary condition (30) at
the outer surface R = B is satisfied if

(46)

As in Horgan and Pence (1989a) and Polignone and Horgan (1993), the condition
(46) may be written compactly on utilizing the s -+ v change of variables in the integral (39).
Introducing the function

and adopting the notation

A a A

W1(x; y) = ax W(x; y),

(47)

(48)

as in Horgan and Pence (l989a), it follows from the arguments given by Polignone and
Horgan (1993) that one may write (46) as

(49)

We remark that (49), here established for the anisotropic composite sphere, has the same
structure as the analogous relation for the isotropic composite sphere [see eqn (2.23) of
Horgan and Pence (1989a)]. As discussed in that reference, the integrand in this equation
is, in general, discontinuous at the interface v = [1 +(c3(A 3

)] '/3. Equation (49) was first
established in Ball (1982) for the case of the homogeneous isotropic sphere [see eqn (5.18)
of Ball (1982); see also Sivaloganathan (1991) for the inhomogeneous case]. Thus, for a
given dead-load Po, solutions involving a traction-free internal cavity of radius c exist
provided that c is a positive root of (49). The associated pressure field is given by

peR) = 2[v- 4 (R)(W, + W5)IR -v 4(R) W2 IR] +4J(R), on 0 < R < A, A < R < B.

(50)

In summary, we have seen that for all values of the applied dead-load traction Po, one
obtains the trivial solution (32) corresponding to the homogeneous state of deformation
(33). Moreover, if positive roots c of (49) exist, then one obtains the additional solutions
involving a traction-free internal cavity described above.

4. THE CRITICAL LOAD AND BIFURCATION

Henceforth we confine attention to a composite sphere composed of two homogeneous
anisotropic phases. To remove the explicit radial dependence from the strain-energy, we
now write W = W(Il' 12 , 13, h 15 ; R) for the composite sphere as

W = W'(IJ,!2,!3,hIs), 0 ~ R < A,

w = W 2(IJ,!2,!3,!4,!S), A < R ~ B. (51)

Using the definitions in (47), (48) and (51), and noting that the second argument in (48) is
no longer required, we rewrite (49) as
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(52)

The critical load Per at which an internal cavity may be initiated is then found by formally
letting c -+ 0+ in (52), and so

1
00 Wi(v)

Per = -3-1 dv.
1 v-

(53)

Since the integral in (53) is improper, Per mayor may not be finite, and thus cavitation may
or may not take place. We also see from (53) that the finiteness ofPer and its value depend
only upon the material at the core of the composite sphere. Such a result was also obtained
in Horgan and Pence (l989b) for a composite sphere with isotropic phases [see also
Sivaloganathan (1991) for a more general result for inhomogeneous isotropic materials).
In Section 5, we derive an alternative formula for the critical load involving the strain
energy function WI(v) instead of its derivative, as in (53).

As regards the lower limit in (53), it is readily verified [see Polignone and Horgan
(1993)] that

dW I (1)
---=0

dv '
(54)

where IJI, f.tf, f.tL are elastic constants associated with infinitestimal deformations of the
transversely isotropic material at the core. Thus by l'Hopital's rule, the limit of the integrand
in (53) is finite as v -+ 1. Thus, the finiteness of Per depends on the behavior of WI(v) for
large values of the stretch v. For example, suppose that the strain-energy density WI can
be written in the form

Then, it can be easily shown that Per is finite if

n<3 (56)

[cf. Chou-Wang and Horgan (1989a) and Polignone and Horgan (1993»). For more general
WI, the finiteness of Per in (53) also requires restrictions on the rate of growth of WI for
large stretch.

We now consider the local character of the bifurcation at Po = Per by analysing the
curve Po = Po(c), given by (49), for small values of c. We first introduce the dimensionless
parameters

and define

B
a=A"' (a> 1) (57)

A Taylor expansion of (58) about p3 = 0 shows that

where

(58)

(59)
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k = lim dp~/dp3.
p3 ..... 0

(60)

A 1 A 2

k - 2 131' dW/dv 13 . dW/dv
- 3Pcr- 3()( lm~3---+1«()( -l)hm .

v- I v-I IH I - 1

On using l'Hopital's rule and defining

as the volume fraction of the core material to the total material, we write k as

(61 )

(62)

(63)

where the quantities d2Wi(1)/dl)2 (i = 1,2), are positive and finite, and each can be written
in terms of the associated infinitestimal elastic moduli (see Appendix A). We see from (59)
that if k > 0, bifurcation is locally to the right (supercritical) while if k < 0, bifurcation is
locally to the left (subcritical). Equations corresponding to (59) and (63) were also deter
mined by Horgan and Pence (1989b) for the case of an isotropic composite sphere, as well
as by Polignone and Horgan (1993) for the case of a homogeneous transversely isotropic
sphere. We now make the further definitions

k dW 2(l)/dv 2

K= d 2W1(1)/dv 2 ' W = d 2 W1(1)/dv 2 '

so that

A Po
P = d 2 Wi'-"(Iec-)/C-C:dv-"2 ,

(64)

(65)

Letting! ---+ 1 in (65), we obtain the value of K appropriate to the homogeneous transversely
isotropic sphere composed of the core material, namely

(66)

In contrast to the case for a homogeneous isotropic sphere for which Kb > 0 so that
bifurcation is only to the right (see Section 5.2 of Ball (1982) or eqn (25) of Horgan and
Pence (1989b)], it was shown by Polignone and Horgan (1993) that for the anisotropic
sphere, bifurcation can occur either to the right or to the left. Thus, for the anisotropic
sphere, Kb can be either positive or negative.

Returning to (65), we now discuss the circumstances which determine whether the
bifurcation for the composite sphere is locally to the right or to the left. It is convenient to
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f

1/6Pcr

0.8

0.6

0.4

II
0.2

0
0 2 3

0)

d2W2(1)/dv 2 ~1(3+4al)
W= = >0

d 2W1(l)/dv 2 ~l(3+4al) .

For parameter pairs (w, f) in region I, the bifurcation occurs to the right, while in region II,
bifurcation occurs to the left. For the curve shown, Pcr/~I = 4(3+4a 1)ftc" a l = 0.157, Per = 0.18.
Figure I corresponds to the case in which bifurcation for the homogeneous sphere composed of the
core material would be to the right (Pcr> 1/6). The point shown in region I is the parameter pair

associated with Fig. 3.
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Fig. 2. Semi-infinite strip

A 3

0< f = B 3 < I,

treat these cases with reference to the schematic diagrams in Figs 1 and 2. Figure 1
corresponds to the case in which bifurcation for the homogeneous sphere composed of the
core material would be to the right, and Fig. 2 to the case in which such a sphere would
bifurcate to the left. In these figures, the semi-infinite strips 0 < f < 1,0 < OJ < 00, are
divided into two regions, I, II, by the curve

f

0.8

0.6

II

0.4

0.2

0
0 2 3 co

d 2W1(1)Jdv1 (3+4a )w = 112 2 > O.
d 2 W1(I)Jdv1 Ill(3+4a l)

For parameter pairs (w, f) in region I, bifurcation occurs to the right, while in region II, bifurcation
occurs to the left. Figure 2 corresponds to the case in which bifurcation for the homogeneous sphere
composed of the core material would be to the left (Pcr < 1/6). The point shown in region II is the
parameter pair (w, f) associated with Fig. 4, while the points in region I, ordered with increasing

w, are the parameter pairs associated with Figs 6(a) and Sea), respectively.
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w-I
few) =-~-,

w-6per
(67)

on which K = O. When Kh > 0 (Fig. I), the curve (67) is monotone decreasing on the region
of interest, and when Kh < 0 (Fig. 2), the curve (67) is monotone increasing withf(w) -+ I
as w -+ 00. In view of the remark made above following (66), we note that there is no
diagram analogous to Fig. 2 for the composite isotropic sphere considered in Horgan and
Pence (1989a, b, c). In both Figs I and 2, if (w,f) lies in region I, then K > 0 and so
bifurcation for the composite sphere is to the right, while if (w,f) lies in region II, then
K < 0 and so bifurcation is to the left.

As in Horgan and Pence (l989b), we may discuss these diagrams with reference to a
composite sphere of either fixed geometric properties together with varying material prop
erties or vice versa. We first consider Fig. 1 so that Kh > 0 (=>Per > 1/6). Taking the former
view, we see that for

1
f >-~---- 6''Per

(68)

bifurcation is always to the right. Thus, if the volume fraction of the core to the total volume
exceeds 1/6pm bifurcation is locally to the right regardless of the material properties of the
outer material. Taking the latter view, we also see that for w ~ 1, i.e. for

(69)

bifurcation is always to the right. As discussed in Appendix A, one has

(70)

where fJ, IlT' ilL are elastic constants associated with infinitesimal deformations of the
transversely isotropic material at hand [cf. (54)z]. In Appendix A, it is shown that

(71 )

where E is Young's modulus in the direction of anisotropy, i.e. the radial direction. Thus,
from (69) to (71), if the material in the surrounding shell is stiffer in tension in the radial
direction than the core material, (E 2~ EI), bifurcation is to the right irrespective ofgeometry.

On the other hand, the condition for bifurcation to the left requires both geometric
and material restrictions. These may be written as

w-If < ---,- and w < 1.
w-6per

(72)

Thus, the occurrence of bifurcation to the left in a composite sphere corresponding to Fig.
1 requires a sufficiently small core surrounded by a shell ofsufficiently compliant material.

We next consider the similar implications in Fig. 2, so that now the core material alone
will undergo bifurcation to the left (Kh < 0 => Per < 1/6). In contrast to the case of Fig. 1,
we cannot determine a single condition for bifurcation to the right to occur. Thus, we must
have
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m-I
f < 6 ~ and m > I.

m- 'Per
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(73)

In other words, the occurrence of bifurcation to the right in a composite sphere cor
responding to Fig. 2 requires a sufficiently small core surrounded by a shell of sufficiently
stiffmaterial.

The situation for bifurcation to the left is much different. Although we can draw no
conclusions based on geometric properties alone, we can deduce that for

(74)

bifurcation is always to the left. Thus, if the material in the surrounding shell is more
compliant in tension in the radial direction than the core material, bifurcation is to the left
irrespective ofgeometry.

Finally from Fig. 2, if

and

m-I
f> 6~'m- 'Per

(75)

(76)

we also have a bifurcation to the left occurring. Thus, bifurcation to the left in a composite
sphere corresponding to Fig. 2 is also possible provided there is a sufficiently large core
surrounded by a shell ofsufficiently stiffmaterial.

The foregoing results may be summarized as follows:

(i) if the core material alone would undergo a bifurcation to the {r::~t}, then the

composite sphere will also bifurcate to the {~:~t} provided the surrounding shell is

{
stiffer } . . h . . .

I
. In tension In t e radIal dIrectIOn than the core material;

more comp tant

(ii) if the core material alone would undergo a bifurcation to the {r::~t}, then the

left

composite sphere will bifurcate to the {r::~t} provided there is a sufficiently {:::::} core

left large

{

more comPliant}
surrounded by a shell which is st~ffer in tension in the radial direction than the

stiffer
core material;

(iii) if the core material alone would undergo a bifurcation to the right, the composite
sphere will also bifurcate to the right provided the volume fraction of the core to the total
volume exceeds 1/6ftcr'

We conclude this section by again emphasizing that the behavior of the composite
sphere is highly dependent upon the core material. Whether cavitation will or will not take
place depends solely on the core material. The value of the critical load depends only on
the core material. Furthermore, material properties of the core alone determine which of
the schematic diagrams (Fig. I or Fig. 2) applies.
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5. ENERGY AND STABILITY OF SOLUTIONS

To examine the stability of the cavitation solutions, we now carry out an energy
analysis. This will be done for the general transversely isotropic strain-energy W described
by (II). The total energy associated with any radially symmetric equilibrium configuration
of the body is given by

(77)

where notation analogous to (40) is employed. For the trivial solution (32) with deformation
(33), we have

£(0) = ° (78)

on using the normalization (12). We now consider (77) to hold for all values of c ~ 0, and
thus seek values of c ~°that, for a given Po > 0, minimize the extended energy function
£(c).

Recalling the notation (47), (34), we may write eqn (77) as

(79)

Henceforth, for simplicity of notation, we omit the explicit dependence of Won its second
argument. Upon introduction of the dimensionless quantity

(80)

and using (51), (57) and (3), we rewrite (79) as

We now let

(82)

where

(83)

and

(84)

We thus state the energy minimization problem as: for fixed Po> 0, we seek those values
ofp ~ °that minimize ~(p).

We first examine the end-point p = 0 where ~(O) = O. It is shown in Appendix B that
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:E(o+) = t(o+) = 0, f(o+) = 6(ftcr-P),

3395

(85)

where the superposed dot denotes differentiation with respect to p, and Pen Pare given by
(64) and (53). Thus p = 0 is a local minimum ifP< ftcr(PO < Per) and a local maximum if
P> ftcr(PO > Per)' Observe that

p = 0, Po> 0, (86)

corresponds to the trivial solution (32).
We now consider the possible existence of internal extrema and thus seek values of

p > 0 for which

t(p) = 0 and so cl>(p)+Po'P(p) = o.

From (84), 'P(p) < 0 for p > 0 so that (87) may be written as

cl>(p)
Po = - 'P(p) , p > O.

(87)

(88)

We note that the expression (88) for Po(p) derived from energy considerations can be shown
to be identical to the expression (49) determined directly in Section 3. Thus, as expected,
the extremals provided by (88) correspond to equilibrium solutions with an internal cavity.

We next analyse the dimensionless energy ~(p) given by (82)-(84) near p3 = O. A
straightforward calculation shows that

(89)

On using (89) and (59), the last term in (82) has the asymptotic expression

(90)

where k is given by (63). We next consider the Taylor expansion

It is easily seen that

4>*(0) = o. (92)

This follows from the fact that ~(O) = 0 and so from (82), 4>(0) +Po '¥(O) =0; however,
(84) implies that '¥(O) = 0, so that (92) must hold.

Now, differentiating (83) we obtain

(93)

so that
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Integrating the first term on the right-hand side by parts gives

f003 2( 3 1)-2W~'()d -1' W'(v) l' WI(V)+fooW1(V)dv v - v v - 1m-3 - - 1m -3- -3- v,
I v- I v -1 v_oo v -1 ,v-l

(95)

where we note from (53) that the last term in the above equation is Per- Since Wi (1) = 0
(i = 1,2) from (12) and (47), using I'Hopital's rule and (54), shows that the first term on
the right in (95) is zero. Also, for a finite Per> i.e. for cavitation to take place, we must have

WI(v) = O(v"), n < 3, as v-+ 00. (96)

Thus, the second term on the right in (95) is also zero so that we arrive at the follow
ing alternative formula for the critical load [when the strain-energy satisfies the growth
assumption (96)] :

['''' 3v 2 ~ I roo WI(v) _
J, (v 3_1)2 W (v)dv = JI v3-1 dv = Per' (97)

Now, the limit in (94) is zero by arguments similar to those used following eqn (95). Thus,
on using the formula (97) for the critical load, (94) reduces to

d<l>*
dp3 (0) = Per·

We next differentiate (93) and obtain

(98)

so that taking the limit as p3 -+ 0 and applying l'Hopital's rule gives

Combining (91), (92), (98), (100) and (62) then gives

Finally, using (90) and (101) in (82), we obtain

(100)

(101)

(102)

where K is given by (65). The above result, which holds for a composite sphere consisting
of two general homogeneous transversely isotropic phases, generalizes those found pre
viously by Horgan and Pence (1989a) and Polignone and Horgan (1993). Thus, recalling
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the results at the end of Section 4, where the curve (88) [or equivalently (52)] was shown
to bifurcate from the trivial solution (86) at the point p = 0, Po = PCr> (102) shows that
!: < 0 on this curve near p = 0 if the bifurcation is to the right (K> 0) and!: > 0 if the
bifurcation is to the left (K < 0). We have thus established, in general, all of the energy
results which were employed for the specific material model in Horgan and Pence (l989a)
to obtain Properties A and B, which we now restate for convenience:

Property A: The curve p = p(p) is a locus of local minima of!:(p)jorfixed p whenever
dpjdp > 0, and is a locus of local maxima of !:(p) jor fixed p whenever dpjdp < O.

Property B: On the curve p = p(p), the values of!:(p) are decreasing with p whenever
dpjdp > 0 and are increasing with p whenever dpjdp < 0.

With the above results we have that, in general, where the curve p = p(p) is monotone
decreasing, the cavitated solution is unstable, and where p = p(p) is monotone increasing,
the cavitated solution is stable. If there exist two stable solutions corresponding to a
particular load, we say that a solution is absolutely stable (AS) if it provides the absolute
minimum for!: and is metastable (MS) if it provides a local minimum for!: which is not
the absolute minimum. In cases such as this, there may be a discontinuous transition in
cavity radius in moving from one stable solution to another. The transition between
metastability and absolute stability will be addressed more completely in the illustrative
example considered in the following section.

6. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the foregoing results for a specific material model. We
consider a composite sphere whose phases are described by a transversely isotropic strain
energy density function proposed by Polignone and Horgan (1993). Thus, we take

W = {~l [(I, -3)+a, (I~-2Is+ I)], °~ R < A,

~2[(/1-3)+a2(/~-215+1)], A < R ~ B,

(103)

where 1,'/5 are given by (17), (21), the J1.i (i = 1,2) are positive constants, and the ai with
o~ ai ~ 5.0 (i = 1,2) are dimensionless parameters which serve as measures of the degree
of anisotropy in the respective phases. When aJ = 0, a2 = 0, one recovers the neo-Hookean
composite sphere treated by Horgan and Pence (1989a, b,c). The response to certain basic
homogeneous deformations of a homogeneous material modeled by a strain-energy of the
form (103) is discussed in Polignone and Horgan (1993). Recalling the notation (34), (47),
and using (35), we rewrite (103) as

~ {W1(V) = ~l [(v- 4 +2v2-3)+a,(v- 8 -2v- 4 + 1)],
W(v) =

W2(v) = ~2 [(v- 4 +2v2 _ 3) +a2(v- 8 - 2v- 4 + 1)],

where, from the considerations of Appendix A,

o~ R <A,

A < R ~ B,

(104)

(105)

for this material. We recall from (71) that the iti are Young's moduli in the radial direction.
On substitution from (104) into (83) and from (105) with i = 1 into (82), and making

the definitions
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(106)

we find that (82)-(84) give the total energy for the composite sphere as

1 [~(P) Po ]
I:(p) = 4(3+4a l) ~ + III 'P(p) ,

where

(107)

and 'P(p) is given by (84). The details of the integration involved in (83) may be found in
Polignone and Horgan (1993). Furthermore, from either (88) or (58), and making the
definitions

F[z(x)] = z- I (x) +~z- 4(X), }
G[z(x)] = F[z(x)]_~Z-2(X) ~Z-5(X)-!Z-8(X)

(109)
1 [ 2z(x) + I )3Z(X)]

+ )3 arctan --)3 +arctan 2+z(x) ,

we obtain the corresponding load/cavity relationship as

Po(p) = 2Z2(P){(1-P)F[Z(<XP)]+PF[Z(P)]
III

For small values of p we have [see (59), (102) respectively]

(Ill)

(112)

where, for the material at hand,
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Per [5 (40n-51J3) ]
so that~ = 2+ 30j3 al (113)

and

K=~[' _1!_1+1(!_I_I)p(3+4a2)]
3 Per 6 6 (3+4a[) . (114)

We now examine the curve (110) and corresponding energy for the material (103) for
large values of p. A detailed analysis of (110) shows that for large values of p,

(115)

while the expression for the energy on this curve for large p follows from (107), (108), (115)
and (84) as

(116)

In (116), e(p)/J.tl is defined to be the quantity in brackets in (107). The expressions (115),
(116) are identical to those found by Horgan and Pence (1989a) for the composite neo
Hookean sphere. [See eqns (3.18), (3.19) of that reference; the additional factor of two in
the equations in Horgan and Pence (1989a) is due to the authors' use of a shear modulus
one-half that of the actual infinitesimal shear modulus.J Thus, the anisotropy considered
here does not affect the large p asymptotic behavior of the bifurcation curve, nor the energy
on it. Since a > l,p > owe see thatp(1-a- 1)+a- 1 > O. Thus, the curve (110) is asymptotic
to a straight line with positive slope, while the energy will always be negative on this curve
for sufficiently large values of p. Thus, the initial character of the bifurcation does not
affect the large p asymptotic behavior. Note that we recover results for the homogeneous
anisotropic sphere [see Polignone and Horgan (1993)J on setting a = 1 in (115), (116).

In Figs 3-6 we have plotted the curve (110) for four different pairs of values of the
anisotropy coefficients aj, a2, and the parameter w defined in (64). [Note that for the
material (103), we have

p

3

2

7 P.,J\.l1654
O-t----r--;---;t-.---,----.,..---;--.--

o 2 Pcr 3
1-11

Fig. 3. Variation ofthe deformed cavity radius p = c/B with applied dead-load traction PO/PI for the
anisotropic composite sphere described by (103). Here a 1 = 0.157, a2 = 0.2477, fJ = (Jt2/P,) = 1.0,

f = (A'/B') 1):-' = 0.1, OJ = [Jt2(3+4a2)l![Jt,(3+4a,)] = 1.1. Also Per/P, = 2.61.

$AS 3O:24-E



3400 D. A. POLIGNONE and C. O. HORGAN

p

3

2

IP ---------

5 6 7

Fig. 4. Variation of the deformed cavity radius P = ciS with applied dead-load traction Po/J.l' for
the anisotropic composite sphere described by (103). Here a, = 1.475, a2 3.7, P= (112111,) = 0.1,

f = (A 3IB 3
) = IX-

3 = 0.1, (J) 1fl2(3 +4a2)]/fJt, (3+4a,)J = 0.2. Also p"IJ.I., = 3.56,
(ptIJ.l."pt) = (1.68,1.04), (ftIJ.l."p) = (1.82,1.45).

(117)

so that choosing any three of the parameters in (117) specifies the last.] All graphs in
Sections 6 and 7 correspond to a representative value f = 0.1 for the volume fraction of
the core material to the total material. The situations corresponding to Figs 3 and 4 were
discussed extensively by Horgan and Pence (l989a) and by Polignone and Horgan (1993).
We will treat these briefly in what follows, and pay closer attention to the more novel
phenomena displayed in Figs 5 and 6. In the case of Fig. 3, the composite sphere undergoes
a bifurcation to the right and a smooth cavitation occurs. Here, an internal cavity is
nucleated at the critical load, with its radius increasing continuously from zero as Po is

p (a)

3

2 ~~----------_.------------

76
O+----r--.,---=..J.,-~'--~'--__r--,__-_.--

o 2 4 P'2 5
I!t

P,t --------------------
1 :,,,
Pt2 ---------------------~----,
Pn --------------------

Fig. 5(a). Variation of the deformed cavity radius P = clB with applied dead-load traction Po/J.l.I
for the anisotropic composite sphere described by (103). Here at = 0.5, a2 3.7, P= (P2111,) = 1.0,

f = (A 3IB 3) = IX- 3 = 0.1, (J) = 1fl2(3+4a2)]/Ifl,(3+4a,)] = 3.56. Alsopc'/J.I., = 2.86,
(PtdJ.l."Ptl) = (3.49,1.21), (Pt2/J.1."pt2) = (4.35,0.52), p" = 0.25, Pt2 = 2.01.



Effects of material anisotropy and inhomogeneity on cavitation 3401

p=c/B
(b)

3

2 --------------------------
I
I
I,,
I
I
I
I
I
I
I
I

, , I

I 'I

~: ~~~~~~~~~~~~~~~~~;~~~~:~~?
AS I I U

04------,~----r----~T---j-l-j----r-----r-----T------

o 2 3 PIT 4 Pr2 5 6 7 P.,4.LI
IJ.I IJ.!

Plr ----------------------:,
MS!'

• I
Ptl --------------------"'t I

1 \ I
{
I'U

Fig. 5(b). Stability zones corresponding to bifurcation diagrams of the type displayed in Fig. 5(a).
Here a, = 0.5, a2 = 3.7, P= (J12/Jl.I) = 1.0,/ = (A 3/B 3

) = 1X-
3 = 0.1,

w = [p.2(3+4a2)]/[p.1 (3+4aJ)] = 3.56. Also Pt,/PI = 3.71, P" = 0.29, fi" = 1.56.

further increased. In Fig. 4, the composite sphere undergoes a bifurcation to the left. There
exists a turning point (PJ' PJ) of the curve at which

dpo = 0
dp , (118)

and a cavity of finite radius is nucleated at a transition load fJ, with PI < fJ < PCr' The
existence of a unique value P = fJ was established by Horgan and Pence (1989a) for the
composite neo-Hookean sphere, and the same result follows here from the Properties A
and B given at the end of Section 5. Stability arguments of the type carried out in Horgan
and Pence (1989a) and Polignone and Horgan (1993) again show that a "snap cavitation"
occurs in which a discontinuous change in stable equilibrium configurations takes place.

p
(a)

3

2

I,,
I,,

............................................. - - ......... ~.................. (Pt2/ J11, Pt2 )
I,,

76
04------,-------r---,-'---r-;;!L--L--r--,-----,---

o 2 3 4 Pcr 5
IJ.I

Fig. 6(a). Variation of the deformed cavity radius p = c/B with applied dead-load traction Po/JI.,
for the anisotropic composite sphere described by (103). Here a, = 2.5, a2 = 3.7, P= (Jl.2/PJ) = 1.0,

f (A 3/B 3
) = 1X-

3 = 0.1, w = [p.2(3+4a2)]/[p.t(3+4aJ)] = 1.37. Also Pcr/Jl.1 = 4.30,
(Ptl/p"PtI) (3.50,1.21), (PU/Jl.I,Pa) = (4.63,0.41).
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P (b)

3

76

PI ----------------------

~l --------------------

1

" P'2
~2 =========================~=ll

~~----------------------- I ~

, ", ", ", ", "
I "
I ", ", ", "
I "I I I II

I I r II

Pc2 --------------------~-r-- II
.. I I I II

P2 P;2:::::::::::::::::::~:T:--~-- I Pt2

I I I II Jll
" ,

O+----,-----r----r----,!--'-..,--IL..JII~---r----,.---

o 2 3/ P\4 J 5
.!22.- 1l\ ~

III III

Fig. 6(b). Variation of the deformed cavity radius P = c/B with applied dead-load traction Po/II'
for the anisotropic composite sphere described by (103). Here a, = 2.5, a, = 3.7, fJ = (11,/11,) = 1.0,
f = (A 3/B 3

) = a- 3 = 0.1, w = lJl,(3 +4a,)J/lJl ,(3+4adJ = 1.37. Also (P'/II"P,) = (3.76,1.60),
(P,/II"P,) = (4.58,0.49), Pt2 = 2.18, p'; = 2.15, Pol = 1.98, p, = 1.60, Pc' = 0.64.

We consider now the situation in which the curve (110) bifurcates to the right from
the trivial solution (86) at the point (Pm 0), and has two turning points (Plh PI]), (Pt2' Pt2),
at which (118) holds. This is the case in Figs 5(a) and 6(a). In each of these figures, the
curve (110) is monotonically increasing for 0 < P < Pt2 and P > Plh and is monotonically
decreasing for Pt2 < P < PII' Note that in Fig. 5(a), PII andpI2 both fall to the right of Pm
while in Fig. 6 (a), Per/ails between Ptl and Pt2'

I
2

P

I
1.5

I
0.5

(c)

,,,,,.,,,,, ,
Pt2 I I

~--~~~~_-L_-_----------L __ ------
P2 Pc2 Ptl

0.1

-0.3
o

-0.1

f4l1 0.3

Fig. 6(c). Energy [e(p)/II,J = [<I>(P)/II,J+IPo(P)/II,]'l'(P), on the curve (110) for the parameter
values of Fig. 6(a).
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f411 1 (d)

0.5

0--+-__:.-:

-0.5

-1

o

Pe2

Pel------------------T------------
P

I
3

Fig. 6(d). Energy [B(p)!J.!I] = [<I>(p)!J.!d + [Po!J.!d'l'(p), for Po = p«fixed, corresponding to the case
of Fig. 6(a).

We first consider Fig. 5(a), for which the number of equilibrium solutions depends on
the values of Po in the following way: for 0 < Po < Pen the only solution is the trivial
solution p = 0; for Per < Po < PIl, there are exactly two solutions, namely, the trivial solution
p = 0 and an additional bifurcated solution involving an internal cavity; for PII < Po < Pt2,
there are exactly four solutions, namely, the trivial solution p = 0 and in addition three
bifurcated solutions each involving an internal cavity; finally, for Po > P12, there are exactly
two solutions, namely the trivial solution and a single bifurcated solution involving an
internal cavity. The trivial solution provides a local minimum for ~ and hence is stable for
o< Po < Pen while for Po > Per the trivial solution provides a local maximum for ~ and thus
is unstable. By virtue of Property A, the bifurcated curve (110) provides a local maximum

P =clB (e)

3

AS

~2 ---------------------------
2

p~--------------------AS-

PI ---------------------- :,
MS/:

~l --------------------~,
\ :

1 ~

~',U, ...., ,, \

~2 ----------------------~----~
: ,··MS

AS 'MS:' U
o.,0-----,----'-'2r-----

3
.---p=-'I··r;;\-I-----~-----~----;~I

III III P'2

III

Fig. 6(e). Stability zones corresponding to bifurcation diagrams of the type displayed in Fig. 6(a).
Here a l = 2.5, a2= 3.7, fJ = (J.!2!J.!1) = 1.0, f = (A 3!B 3

) = 0(-3 = 0.1, w = lJ.l2(3+4a2)]!
lJ.l,(3+4al)] = 1.37. Also (ft,fJ.!" PI) = (3.76,1.60), (ft2!J.!"P2) = (4.58,0.49), Pa = 2.18,

P';, = 2.15, Pel = 1.98, PI = 1.60, Pe2 = O.64,Pa!JlI = 4.63.
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for ~ if Pt2 < P < Pu and hence the associated solution is unstable, while for 0 < P < PI2
and P > PII, this curve provides a local minimum for ~ and hence this solution is stable.
Thus if 0 < Po < Ptl or if Po > Pt2, there is exactly one stable equilibrium solution, while if
Pu < Po < Pt2 there are two stable equilibrium solutions, each involving an internal cavity.

We now address the transition between metastability and absolute stability in the
region Ptl ~ Po ~ P12' We again refer to Fig. 5(a). Observe that the stable branches on the
region of interest correspond to the intervals Pu ~ P ~ PI2 and Ptl ~ P ~ P12, where PI I, PI2
are the points at which PO(Ptl) = Ptb PO(Pt2) = P12, respectively, and where (118) is not
satisfied. From Property B and ~(O) = 0, we have that ~(p) decreases from zero on the
interval 0 ~ P ~ P12' Property Band (116) give that ~(p) is decreasing with p for P > PII.
and ~(p) is negative for sufficiently large p. (Note that ~(PII) can be either positive or
negative.) We now define a transition load Po = PtP satisfying Ptl ~ Ptr ~ P12, such that for
PI! ~ Po ~ PIP we have ~(p) on Pu ~ P ~ Ptr less than ~(p) on p,! ~ P ~ PIP and for
Ptr ~ Po ~ Pt2, we have ~(p) on Ptr ~ P ~ Pt2 greater than ~(p) on Ptr ~ P ~ Pt2, where PIn
Ptr (Plr > Ptr) are the values of P occurring on the stable branches for which Po(p) = Ptr' Tn
other words, Ptr is the value of the dead-load at which the energy on the upper portion of
the bifurcation curve becomes less than that on the lower portion of this curve, and thus
the value after which the upper branch remains the absolutely stable solution. The preceding
is sketched in Fig. 5(b). Note that if Ptr = PI], then Ptr = PII and the upper branch is
absolutely stable for P > PI!, and if Ptr = P12, then Plr PI2 and the lower branch is the
absolutely stable solution for 0 < P ~ Pt2'

Consider now the quasi-static loading process in which the composite sphere is sub
jected to a tensile dead-load surface traction Po which increases slowly from zero. We again
refer to Fig. 5(b). The trivial homogeneous deformation (33) persists as Po is increased from
zero, until the critical load, Po = Pcro is reached. Then an internal void is nucleated, with
cavity radius increasing continuously from zero as Po increases, until Po = Plr' At this point
there are two possibilities. First, if one supposes that the body always assumes an absolutely
stable configuration, then as Po passes through PtP a discontinuous growth in cavity radius
from c = BPtr to c = BPtr is predicted, with cavity radius increasing continuously as Po is
further increased. On the other hand, if one supposes that continuous deformation of the
body persists as long as possible, then the cavity radius grows continuously as Po is increased
until Po = Pt2 and then experiences a jump from c = Bpt2 to c = Bpt2 as Po passes through
Pt2' The cavity radius then increases continuously as Po is further increased. Note that the
foregoing two possibilities coincide ifPtr = Pt2'

We next consider Fig. 6(a), for which the number of equilibrium solutions depends on
the values of Po in the following way: for 0 < Po < Plb the only solution is the trivial
solution P = 0; for PI! < Po < Per' there are exactly three solutions, namely, the trivial
solution P = 0 and in addition two bifurcated solutions each involving an internal cavity;
for Per < Po < Pt2, there are exactly four solutions, namely, the trivial solution P = 0 and in
addition three bifurcated solutions each involving an internal cavity; finally, for Po > P12,
there are exactly two solutions, namely the trivial solution and a single bifurcated solution
involving an internal cavity. As noted earlier, the trivial solution provides a local minimum
for ~ and hence is stable for 0 < Po < Pcro while for Po > Per the trivial solution provides a
local maximum for 2: and thus is unstable. Again by Property A, the bifurcated curve (110)
provides a local maximum for ~ if PI2 < P < Ptl and hence the associated solution is
unstable, while for 0 < P < Pt2 and P > PI], this curve provides a local minimum for ~ and
hence this solution is stable. Thus if 0 < Po < Ptl or if Po > P12, there is exactly one stable
equilibrium solution, while if PI! < Po < Per there are two stable equilibrium solutions, one
involving an internal cavity, and ifPer < Po < PI2 there are two stable equilibrium solutions,
each involving an internal cavity.

To address the transition between metastability and absolute stability, we refer to Figs
6(b, c), where PIt, P'2' Pu, PI2 are as before, and Pel denotes the value of P > 0 occurring on
the stable branch for which Po(p) = Pcro while Pe2 denotes the value of P > 0 such that
Po(p) = Per occurs on the unstable branch. In Fig. 6(c) we have graphed the energy,
e(p)/f.ll = [<1>(p) +Po(p)\lI(p)]/f.lj, for P > 0 on the curve shown in Fig. 6(a). Note that the
following analysis depends only on the sign of 2:(p) = e/[4f.l! (3 +4a I )], which has the same
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sign as s so that all necessary information on 1: can be extracted from Fig. 6(c). We shall
now show that there exists a unique value of Po, namely Po = Pb satisfying Ptl < PI < Pt2,
such that, ifPI < Pm the trivial solution is absolutely stable for Po < PI, while for Po > PI,
the absolutely stable solution occurs on the bifurcated branch. [We note here that we shall
confine attention to the case PI < Per in what follows; stability for the case PI> Per is
analogous to the situation previously described for Fig. 5(b).] The desired result is estab
lished by the following argument: First, since 1:(0) = 0, we have 1:(P12) < 0 from Property
B. Second, from Property A, we know that for Po = Per fixed, P = Pe2 corresponds to a local
maximum of the energy while P = 0 and P = Pel correspond to local minima. Thus, in
particular,1:(Pe2) > 1:(0) = O. [We remark here that the energy curveforfixed Po is distinctly
different from that displayed in Fig. 6(c). In Fig. 6(c), every value of P corresponds to a
particular maximum or minimum of the energy associated with a corresponding value of
the load Po. To see this, compare Fig. 6(c) with Fig. 6(d), which represents the energy curve
1:(p) vs P for fixed Po = Per. Figure 6(d) indeed shows that PebPe2 correspond to extrema
of the energy for Po fixed at Po = Per. Note also that although Fig. 6(d) implies
1:(Pel) < 1:(0) = 0, this is not necessarily true for all curves of the type shown in Fig. 6(a).]
Returning now to our argument, we have from 1:(pd < 0, 1:(Pe2) > 0, and Property B,
that there exists a unique value of P = P2' satisfying Pt2 < P2 < Pe2, for which 1:(pz) = 0
[see Fig. 6(c)]. We now consider the value of the load associated with P2' defined to be
Po(pz) == P2' Again from Property A for Po = P2 fixed, 0 = 1:(P2) > 1:(p~), where p'~ is the
largest value of P such that Po(p) = pz [see Figs 6(b, c)]. We also observe that the above
along with Property B give 1:(Ptl) > O. Therefore, by Property B, there exists a unique value
of P = Pb satisfying Ptl < PI < p'~, for which 1:(p\) = O. The associated load is then
Po(p I) == PI [see Figs 6(b, c)]. Thus, the energy on the bifurcated curve is such that 1:(p) < 0
for 0 < P < pz and for P > PI, while 1:(p) > 0 for P2 < P < PI' This completes the argument
since the energy associated with the trivial solution is zero everywhere.

Consider now the previously envisioned quasi-static loading process. We thus refer to
Fig. 6(e), where, as remarked earlier, we have PI < Per. If one supposes that the body always
assumes an absolutely stable configuration, then the trivial homogeneous deformation (33)
persists for 0 < Po < PI' As Po passes through PI, the foregoing notion of stability predicts
the sudden appearance of a cavity of finite radius c = BpI' As Po is further increased, the
cavity radius increases in a continuous fashion. On the other hand, one may suppose that
the trivial homogeneous deformation (33) persists until it becomes unstable at Po = Per. In
this case, there are two possibilities as Po passes through Pen similar to those discussed for Fig.
5(b). First, if one supposes that the body then assumes an absolutely stable configuration,
the sudden appearance of a cavity of finite radius c = BpcI is predicted, with cavity
radius increasing in a continuous fashion as Po is further increased. On the other hand,
one may suppose that continuous deformation of the body persists as long as pos
sible so that an internal void is nucleated at Po = Per and the cavity radius grows continu
ously from zero until Po = Pt2 and then experiences a jump from c = Bptz to c = BPt2'
as Po passes through PtZ' The cavity radius then increases continuously as Po is further
increased.

We have seen in the foregoing that there are four distinct types of bifurcation that can
occur (Figs 3-6). Note that these four possibilities exist regardless of which of the schematic
diagrams (Fig. I or Fig. 2) applies. In each of the diagrams, points in region II give rise to
only one type of bifurcation (i.e. that shown in Fig. 4), while points in region I have three
types of bifurcation associated with them (i.e. those shown in Figs 3,5,6). We also remark
that although there corresponds a different diagram resembling either Fig. I or Fig. 2 for
every value ofab these two diagrams exhaust the possibilities. For al < ao, we have a figure
similar to Fig. I, and for a I > ao, we have a figure similar to Fig. 2. We recall from Polignone
and Horgan (1993) that for a homogeneous sphere consisting of the inner material only,
ao is the transition value of the anisotropy parameter, a, which governs whether bifurcation
for this sphere is to the right (a < ao) or to the left (a > ao). The numerical value of
ao :::-; 0.257 is given by Polignone and Horgan (1993), eqn. (5.28). Finally, we observe that
regardless of the stability criterion adopted, a discontinuous growth in cavity radius is
predicted in three of the four types of bifurcation discussed.
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Fig. 7. Variation of the deformed cavity radius P = c/B with applied dead-load traction
Po/fl., for the anisotropic composite sphere described by (103). Here 0, = 0.5, a, = 1.475, f3 =

(J1.,/fl.,) = 2.0,/ = (Al/B l) = eel = 0.1, w = (J1.,(3+40,)]/(J1.,(3+4a,)] = 3.56. Also
Pet/fl.' = 2.86, (Pt,/fl."Ptl) = (4.81,0.94), (Pt,/fl."Pt') = (4.86,0.68).

We conclude this section by addressing more closely how the anisotropy considered
here results in the four different bifurcations we have seen. As stated above, when the
parameter pair (ill, f) lies in region II in either of the schematic diagrams Figs 1,2, we have
seen only one type of bifurcation. However, when (ill, f) lies in region I, there are three
possibilities. We now examine the role of the anisotropy parameters a I> a2, in determining
which of the three types of bifurcation associated with region I occurs. For this purpose,
we refer to Figs 5(a), 7 and 8. These three figures correspond to the same value ofal> the
same parameter pair (ill, f), and different values of a2' Note that the value of Pnecessarily
changes if one holds a, and ill fixed, and varies a2 [see the comment following (117)]. As
the value of a2 is decreased from a2 = 3.7 in Fig. 5(a), to a2 = 1.475 in Fig. 7, the value of
Ptl approaches that ofPt2, so that the region in which there is more than one stable solution,
i.e. Ptl ~ Po ~ Pt2, becomes much smaller. When a2 is further decreased to a2 = 0.14 in Fig.
8, the curve (110) is monotone increasing, so that bifurcation here is of the type displayed
in Fig. 3. We also note that, if we held the values of a" ill and f associated with Fig. 6(a)
fixed and varied a2 as above, this would give rise to figures similar to those shown in Figs

P

3

2

65432
0-4----,--.,--...1,---,----,----,-----.-

o

Fig. 8. Variation of the deformed cavity radius P = c/B with applied dead-load traction Po/II' for
the anisotropic composite sphere described by (103). Here 0, = 0.5, 0, = 0.14, f3 = (fl.,/fl.,) = 5.0,

f = (Al/Bll = oc- l = 0.1, w = [11,(3 +4a,l]/(J1., (3+40,l) = 3.56. Also p,,/Il, = 2.86.
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7 and 8. Thus, we conclude that it is the magnitude of the anisotropy parameter a2 associated
with the surrounding shell that is important in determining the region in which multiple
stable solutions occur and thus the monotonicity of the curve (1l0). For large values of a2
in the range 0 ~ a2 ~ 5, one obtains figures like Fig. 5(a) or Fig. 6(a), while for small a2
one obtains figures like Fig. 8. In addition, we observe from Figs 5(a), 6(a) that the
magnitude of the anisotropy parameter a 1 associated with the core material is also crucial in
determining which of these two more novel types of bifurcation occurs. These two figures
correspond to the same values ofa2, {3 and f, but different values ofa I (and again, necessarily
different values of w). The above statement follows from the fact that the point at which
the curve (110) bifurcates from the trivial solution, i.e. at PolJl.1 = Pcr/Jl.1' is solely dependent
upon the value of al [see (113)2 as well as the last paragraph of Section 4]. Thus, the
magnitude of a I determines whether Pcr < Ptl or Pcr > PII, which in turn implies whether we
have a figure like Fig. 5(a) or Fig. 6(a), respectively. Finally, we observe that for a composite
sphere corresponding to a diagram like that of Fig. 1, so that al < ao ~ 0.257, the changes
in character of the bifurcations are not as drastic as those associated with Fig. 2 since
variations in the magnitude of a I are limited.

7. STRESS DISTRIBUTION

We proceed now to discuss the stress distribution in the composite anisotropic sphere.
Recall that at the beginning of Section 3, we saw that the stresses corresponding to the
trivial solution (32) were given as

Trr = Too = T",,,, = Po· (119)

Thus, prior to cavitation, we have simply the constant stress distribution (119). Subsequent
to cavitation (c > 0), (45), (39), give the radial stress as

100 3 ~ 1 A ( c)Trr(R) = (v -I) WI v; e 1)1/3 dv, on 0 ~ R ~ B,
(l+c3/R 3)1!3 V -

(120)

where we recall the notation (47), (48). On using (52), we may write (120) for the composite
anisotropic sphere as

Now, from (22), (23), (34), we can write the hoop stresses as

where Trr(R) is given by (120) or (121), and we recall the notation (40). From (121), (122)
and our assumptions on the smoothness properties of W, we see that Trr is a continuous
function of R on 0 ~ R ~ B, with a discontinuity in slope at the interface R = A, while
Too(R) = T",,,,(R) suffers ajump discontinuity at the interface. The stress distributions (121),
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Fig. 9. Variation of the stresses T,,(R), Too(R) = T~~(R) with undeformed radius R subsequent to
cavitation for the anisotropic composite sphere described by (103). The parameters are those
corresponding to Fig. 4, i.e. a l = 1.475, a, = 3.7, fJ = 0.1, W = 0.2, f = 0.1. Also Po/fll = 1.85,
P«/fll = 3.56. At the material interface, the hoop stresses are discontinuous, and the radial stress is

discontinuous in slope.

(122) are given explicitly [see (130), (131) below] for the material model (103) and are
illustrated in Figs. 9 and 10. Further discussion of these figures will be carried out below.

Another interesting feature of the stresses immediately after cavitation is the presence
of a boundary layer near the cavity wall in the case of smooth cavitation. To see this, we
observe that for fixed R,O < R ~ B, letting c -+ 0+ formally in (121) results in the right
hand side of (53), so that

lim Trr(R) = Pen 0 < R ~ B.
c-+ 0+

(123)

Since Trr(O) = 0, (123) shows that, when smooth cavitation takes place (so that the cavity
radius increases continuously from zero in a neighborhood of Pcr) the radial stress suffers
a rapid growth near the cavity wall for applied dead loads Po slightly larger than Per' This
boundary layer behavior is shown in Fig. II for a particular case of the material model
(103). From (122), it is clear that a similar boundary layer exists in the stress components
Too(R), T",,,,(R).

We next consider the radial stress at the interface. From (121), we have

(124)

We wish now to determine a sufficient condition on the strain-energy so that the maximum
interfacial stress is reached at the point at which cavitation occurs. This will be the case if
Trr(A) is monotone decreasing with respect to cavity radius c > O. It is readily verified that

dTrr(A) 1 3 3-2/3 Al
--d-- = - -(1 +c jA) W 1(v)I,,(A)=(I+c 3 /A 3 jli3

c c

so that for c > 0, dTrr(A)jdc < 0 if and only if

Wl(v) > 0 for all v > 1.

Now, from (119), we have prior to cavitation,

(125)

(126)
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Fig. 10. Variation of the stresses T,,(R), Too(R) = T~~(R) with undeformed radius R subsequent
to cavitation for the anisotropic composite sphere described by (103). The parameters are those
corresponding to Fig. 6(a), i.e. a, = 2.5, a2 = 3.7, P= 1.0, w = 1.37, f = 0.1. Also Po/J.l' = 3.95,

Pcr/J.l1 = 4.30.

and from (123), subsequent to cavitation,

lim Trr(A) = Pcr == lim Po(c), c > O.c_o+ c_o+

(127)

(128)

There are now three possibilities to consider. First, in the case of smooth cavitation, the
radial stress at the interface Trr(A) increases linearly with Po until Po = Pcn Trr(A) is

3

2.5

2

1.5

a: p=1.01Pcr (p = 0.12)
b: p=1.00lPcr (p = 0.06)
c: p=1.0001Pcr (p =0.03)
d: p=1.00001Pcr (p =0.015)

0.5

O-f---.-----,------.,r----,------,--
o 0.2 0.4 0.6 0.8 1 R / B

Fig. II. Variation of the radial stress T,,(R), with undeformed radius R subsequent to cavitation
for the anisotropic composite sphere described by (103). The parameters are those corresponding
to Fig. 5(a), i.e. al = 0.5, a2 = 3.7, P= 1.0, w = 3.56,f = 0.1. Here Pe</J.l. = 2.86. The radial stress

is discontinuous in slope at the material interface.
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Fig. 12. Variation of the radial stress at the interface T,,(A) with applied dead load tractionpo/,ul
for the anisotropic composite sphere described by (103) with parameters corresponding to Fig. 3,

i.e. al = 0.157, a, = 0.2477, f3 = ,u,/,ul =1.0, W = 1.1,/ = 0.1. Herep,,/,ut = 2.61.

continuous at Po = Pm and then decreases for Po> Per (see Fig. 12). Second, for the case
of snap cavitation, where a cavity of finite radius C = Co > °appears at a transition load
Po < Per (Po is analogous to the quantities P or P I discussed in Section 6 in connection with
Figs 4 or 6, respectively) eqn (128) is no longer relevant. The interfacial stress Trr(A)
increases linearly with Po until Po = Po, at which point it suffers a jump discontinuity. If
condition (126) holds, it is easily seen that the integrand in (124) is positive on the range
of integration, so that the jump in Trr(A) is negative. Thus upon appearance of a cavity with
finite radius, (c = Co > 0, Po = Po), the value of T,,(A) necessarily decreases (see Fig. 13).
Third, consider the radial stress at the interface for the case in which the sphere undergoes
a bifurcation of the type portrayed in Fig. 5. Here Trr(A) increases linearly with Po until
Po = Pm Trr(A) is continuous at Po = Pm and decreases until Po reaches a transition value
(greater than Per) where it again suffers a jump discontinuity (see Fig. 14).

As observed in Horgan and Pence (1989b), the foregoing considerations have immedi
ate implications relating to the issue of possible debonding at the material interface R = A.
(We remark that in that reference, a figure of the type displayed in Fig. 14 did not arise.)
Suppose that the interface bond is sustained only so long as the normal stress at the interface
remains less than a threshold value, Td , a measure of the strength of the interface bond.
Then debonding would occur if

(129)

Consider again a quasi-static loading process in which Po increases slowly from zero. If
Td < Per for smooth cavitation (Td < Po for snap cavitation) then debonding occurs when
Po = Td and cavitation is not relevant. However, if Td > Per for smooth cavitation (Td > Po
for snap cavitation), then when (126) holds, the resulting stress relief at the interface
precludes the criterion (129) from being met and thus eliminates the possibility of interface
debonding.

We conclude this section by returning to the material model (103). Recalling the
notations (106) and (109), the stresses (121), (122) for a composite sphere composed of
such a material can be written as
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Fig. 13. Variation of the radial stress at the interface T"(A) with applied dead load traction Po/Ill
for the anisotropic composite sphere described by (103) with parameters corresponding to Fig. 4,
i.e. 01 = 1.475, 02 = 3.7, P= 1l2/1l1 =0.1, W = 0.2, f = 0.1. A jump discontinuity exists at

p/III = 1.82. Here p,/III = 1.68, Pcr/III = 3.560.

2{F[Z(~P)J+20,C~ -G[Z(~p)J)}, o~ R ~A,

T,,(R) 2{(l-p)F[z(ap)] +PF[Z(~P) J+ 3~01 (130)----
JJ.,

+2(a2P-a,)G[z(ap)] -2a2PG[Z(~p )J}, A ~R~B,
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Fig. 14. Variation of the radial stress at the interface T"(A) with applied dead load traction Po/Ill
for the anisotropic composite sphere described by (103) with parameters corresponding to Fig. 5(a),
i.e. 01 = 0.5,02 = 3.7, fJ = 1.0, W = 3.56,/ = 0.1. Ajump discontinuity exists at P,,/Il I = 3.71. Here

p"IJ1., = 3.49, p,2/J1.1 = 4.35, Pc, III I = 2.86.
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and

Tee(R) T¢¢(R)
~~-, = -~_._-~-
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(131 )

These stresses are shown in Figs 9 and 10 for parameter values corresponding to the
bifurcation diagrams, Figs 4 and 6, respectively. In Fig. 9, these stresses are plotted for a
case with {3 < 1 (Ilz < Ill)' When {3 > 1 (1l2 > Ill), the jump in Too = T¢¢ at the material
interface R = A is in the opposite direction to that in Fig. 9, while the slope discontinuity
in Trr has the opposite character. In Fig. 10, we have {3 = 1.0, and the jump discontinuity
in Tee = T",¢ nearly vanishes. This dependence of the hoop stress discontinuity on the
relative sizes of Ilj, Ilz, i.e. on the size of (3 compared to unity, was seen in the hoop
stresses corresponding to the composite neo-Hookean sphere discussed in Horgan and
Pence (1989b). Thus, the anisotropy considered here has a negligible effect on the jump
discontinuity in the hoop stresses at the material interface. This can be seen from (131)
since it is the (3z2 term in the second of (131) which contributes most significantly to the
discontinuity.

Finally, it is easily verified that the condition (126) holds for the material (103), so
that we do have normal stress relaxation at the material interface subsequent to cavitation
for all materials of the type (103). Thus, as seen earlier, regardless of the stability criterion
adopted, there are essentially three possible ways in which the composite sphere may
deform. First, a smooth cavitation may take place. Second, an immediate snap cavitation
at some load less than the critical load may occur. Third, a smooth cavitation may initially
take place, followed by a "snap" from one finite cavity radius to another at some load
greater than the critical load. The interfacial normal stress for these three cases are shown
in Figs 12, 13 and 14 for spheres with parameter values corresponding to the bifurcation
diagrams, Figs. 3,4, and 5(a), respectively.
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APPENDIX A

(i) Verification of (70)
We first show how d 2 W(I)/dv 2 is related to the elastic moduli for infinitesimal deformations and thereby

establish (70). Denoting by w the strain-energy density for an incompressible linearly elastic material which is
transversely isotropic about an axis along the unit vector a, we have [see e.g. Spencer (1982)]

(AI)

where p, Jl.T, Jl.L are elastic constants, and E is the infinitesimal strain tensor. For the deformations of concern
here, we find that
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W = w(v) = JlT[(V-' _I)' + 2(v -1 )'] + 2(tlL - tlT )(v-' _I)' + Y1(v-' -I)Z. (A2)

From (A2), it is readily verified that

(A3)

For infinitesimal deformations of the nonlinear material with strain-energy W(v) given by (47) (where the second
argument in (47) has been suppressed), it is natural to assume that [d'W(1)/dv'] = [d'w(l)/dv'], and so from
(A3) we find that

(A4)

which is (70).

(ii) Verification of (71)
To show the result (71), we first consider the strain-energy density function for a linearly elastic transversely

isotropic compressible material, given by Spencer (1982) as

(AS)

where A" JlT, PL, Ii and Pare elastic constants, and a, E are as defined above.
Alternatively, when a = (1,0,0), one may write the above in the following form [see Eubanks and Sternberg

(1954)] :

where the Eu (i, j = 1,2,3) are components of the infinitesimal strain tensor E, and a, ii, b, tl and ii are elastic
constants, with tl and ii shear moduli. In Eubanks and Sternberg (1954), it is also given that Be, the Young's
Modulus in the direction of transverse-isotropy (the I-direction) for a compressible linearly elastic transversely
isotropic material, is

(A7)

[see eqn (3.12) of the above reference]. On comparing (AS) with (A6) and using (A7), we find Be expressed in
terms of the parameters associated with (AS) to be

_ (A,+tlT)(A-2tlT+{1+4tlL +21i)-(i.+ti)'
Ee =-----·· ..

(A+tlT)

A(P- tlT+4tld + tlT(P+4tlL -2tlT +2ti) _iX'

(i.+tlT)

(A8)

(A9)

To now recover the desired result for an incompressible linearly elastic transversely-isotropic material, we let A .....
OCJ in (A9) [see Spencer (1972), pp. 91-92]. Thus, on using I'Hopital's Rule we obtain

(AIO)

which is the desired result (71).

(iii) Verification of ( 105)
On comparing (A4) with (AIO), we obtain

(All)

where the inequality in (All) is required for positive definiteness of w [see e.g. Eubanks and Sternberg (1954),
p. 96]. Specializing to our composite sphere, we have from (AIO), (All),

(AI2)

where the superscripts i = 1,2 correspond to the core and outer materials, respectively.
For the material model (103), (104), it is easily seen that

(AI3)

where the inequality follows from (All). By reasoning analogous to that given at the end of part (i) of this
Appendix, we have the desired result (lOS) on equating (AI2) and (A13). We remark finally that as we have
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III > 0, eqn (A13) requires a, > - t a somewhat less restrictive condition than our assumption of non-negative a,
made just after (103).

APPENDIX B

(i) Verification of (85)
Here we present the details of the derivation of (85). Recall from (82) and (64)4 that

I:( ) = <II(p) + -'P() ~ 0,
p d'W'(1)/dv' P p, P

where <II(p), 'P(p) are given by (83), (84), respectively. From (84), it is easily seen on taking derivatives that

-P(o+) = >¥(O+) = 0, >¥(O+) = -6.

We thus confine attention to the evaluation of «ii, (D, ciJ as p --> 0+ to establish the desired results.

(ii) Verification of1:(0+) = 0
By the chain-rule, we have <t>(p) = 3p' d<ll/dp 3, where d<ll/dp 3 is given by (93), so that

«iI(O +) = lim 3p' d<ll/dp 3 = 0,
p--+O+

where we have used (98) in the final step in (B3). From (BI) we have

1:( ) = <t>(p) + -'1'( )
p d'W'(I)/dv' P p,

(B1)

(B2)

(B3)

(B4)

so that upon evaluation of (B4) as p --> 0+ and substitution from (B2)" (B3), we have the desired result (85) I' i.e.

(iii) Verification oft(O +) = 0
By the chain-rule, we have

1:(0+)=0.

d<ll 4 d'<II
$(p) = 6p dp 3 +9p d(p3)"

(B5)

(B6)

where again the first derivative on the right is given by (93), and the second by (99). Substituting (99) into (B6)
and taking the limit as p --> 0 + gives

(B7)

where we note from an argument analogous to that used in (B3) that the first term on the right in (B7) is zero. It
is shown in Polignone and Horgan (1993) that W~ (I) = 0, (i = 1,2), and so the second term in (B7) is also zero.
Thus,

From (B4) we have

$(0+) = o.

f = $(p) +-'1'
(p) d'W'(I)/dv' P (p),

(B8)

(B9)

so that upon evaluation of (B9) asp --> 0+ and substitution from (B2)" (B8), we have the desired result (85)" i.e.

(iv) Verification ofi:(O+) = 6(fic,-p)
By the chain-rule, it can be shown that

t(O+) = O. (BIO)

(Bll)

From (98), we know that the limit as p --> 0+ of the first term on the right in (BlI) is 6p"" so that the desired
result will follow from showing that the last two terms in (BlI) are zero as p --> 0+. We first address the second
term on the right in (BlI). It is easily seen that, on substitution from (99) and on using W\(!) = 0, (i = 1,2), we
have

SAS 3O:24-F
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I
. 3 d 2cI>
1m 54p d( 3)2 = O.

p_O+ P
(BI2)

To address the last term in (BII), we first differentiate (99) to obtain

d3cI> _ ~j1(X3P3W W2 jdv 2 _d2 W1jdv 2)((1 + (X3p 3) 113)

d(p3)3 (p) - 3 p6(1+(X3p3)413

where, in (BI3) we have introduced the notation

[f- g](x) == f(x) - g(x).

(BI3)

(BI4)

Since the quantities d 2Wi(l)jdv 2 (i = 1,2), are finite, substitution from (BI3) into the last term in (BII) and
taking the limit as p -+ 0+ results in

I· 2 6 d
3

cI>
1m 7p d( 3) 3 = O.

p_O+ P

Thus, we have shown that the last two terms on the right in (BII) vanish as p -+ 0+ and so

From (B9) we have

~( ) = cI>(p) + ..p( )
P d 2 W' (I)jdv 2 P p,

(BI5)

(BI6)

(BI7)

so that upon evaluation of (BI7) as p -+ 0+ and substitution from (B2)" (BI6), we have [recalling (64)3] the
desired result (85)" i.e.

~(O+) = 6(ftc,-p). (BI8)


